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ABSTRACT 

A systematic procedure i s  presented for constructing the character  table of a given 
finite group. The use of this procedure makes the task of computing group character  
tables more straightforward than previously published procedures. Each step in the con- 
struction of the character  tables i s  illustrated by worked out examples. An appendix of 
group tables, character  tables, and c lass  algebra tables for many of the common finite 
groups i s  included. 



A N  EFFlC IENT METHOD FOR COMPUTATION OF CHARACTER 

TABLES OF FINITE GROUPS 
Y 

B by Gabriel A l len  

Lewis Research Center  

SUMMARY 

A systematic procedure is presented for constructing the character  table of a given 
finite group. The use  of this procedure makes the task of computing group character  
tables more  straightforward than previously published procedures.  Each step in the con- 
struction of the character  tables is illustrated by worked out examples. An appendix of 
group tables,  character  tables,  and c lass  algebra tables for many of the common finite 
groups is included. 

INTRODUCTION 

The reader  should be familiar with elementary group theory at least  to the extent o 
knowing the definition of common t e r m s  (ref. 1) .  The application of group theory to phys- 
ical  and chemical problems i s  now common. Group theory is a systematic and efficient 
way of exploiting the symmetry in physical systems to avoid duplication of computation. 
Once the collection of symmetry elements has been identified as a known group (this iden- 
tification is often tantamount to a geometric exercise), the character  table and irreducible 
representations a r e  the most useful properties of the group. 

The determination of character  tables (CT) and irreducible representations (IR) are 
standard topics of elementary group theory (refs. 2 and 3).  However, most descriptions 
of these procedures  appear to depend on an  intuitive feeling about each particular group. 
For this  reason,  a systematic and efficient procedure for  constructing character tables of 
finite groups is presented. The procedure is due to Harter (ref. 4) and does not seem to 
be well known. 

proved methods fo r  finding them require  considerable extension of elementary group 
theory.  Such extensions have been made (refs .  4 and 5) but will not be described herein. 

Procedures  for  computing irreducible representations a r e  a l so  important, but im- 



Recently, Harter has made additional extensions enabling CT's  and IR's of ray  algebras  
to be computed efficiently (unpublished data obtained f rom W. G. Harter . )  

cluded in an appendix. 
Some common finite groups, their  character  tables, and c lass  algebra tables are in- 

PROCEDURE 

In a very broad outline, the procedure consists of the following five steps:  
(1) Construction of the c l a s s  algebra table 
(2) Construction of the regular  representations of c lass  elements 
(3) Finding the eigenvalues and eigenvectors of the representation in s tep (2) 
(4) Arrangement of the eigenvalues into collections 

(5) Finding the "columns" in the CT using 

corresponding to the 
given IR's, 9 ( a) 

where 

character of j th  c lass  in ath irreducible representation (IR) 

dimension of ath IR 

xj 
2 (@) 

OCj order of j t h  c lass  

A detailed description of each of these s teps  follows. 

C o n s t r u c t i o n  of Class Algebra Table 

This s tep in the procedure i s  conveniently divided into four substeps: 
(1) The group 9 is broken up into its c l a s ses ,  Ki. 
(2) A table is constructed whose columns represent  the c l a s ses  of 9 and whose 

rows a r e  collections of elements containing the inverses  of elements of the c l a s ses .  The 
collection of inverses of the elements in c l a s s  K. i s  a l so  a c lass  of 9 and will be de- 
noted by K . 

l 

0 
(3) The group table is used to find which collections of elements occur when all ele- 

t h  ments  in the c lass  of the ith row operate  on all the elements  in the c l a s s  Of the j 

2 



column (K.). (This is the usual convention in group multiplication tables.)  

c lass  every t ime it occurs .  For example, K 
entry in the ith row and Jth column. 

A s  a n  example, the c lass  algebra table of group D3 is displayed. For D3, it hap- 
If the group table for  D3 in appendix B is used, the c lass  algebra gens that 

table fo r  D3 (also shown in appendix B) is constructed immediately: 

J 
(4) The resulting collection is divided into classes, again being su re  to count each 

K. = 2K0 + 4K2 i s  considered a proper  
@ I  

KO = Ki. 

KO KO K2 

K2 

K3 

K3 

K2 2K0 + K2 2K3 

K3 2K3 3K0 + 3K2 

C o n s t r u c t i o n  of Regular Representation of Class Elements 

Here,  u s e  is made of the s t ructure  constants of the c lass  algebra Cia. These are 
defined by 

K.K =x C! io! K j 
1 ,  

j =1 

where nc is the number of c lasses  in 3J. The regular representation matrix R(K,) is 
obtained f rom the definition 

The  class algebra table permi ts  the C!, t o  be "read off" at a glance. The proce- 

3'. Thus, the first row corresponds to 
dure is as follows. The dimension of the regular representation R(K,) is nc X nc. The  
rows and columns are labeled by the c lasses  of 
the c l a s s  KO, the second one to K2, etc.  

The ent i re  representation matr ix  of the c lass  of K, is obtained from one column 
(the a ) of the class algebra table. The second subscript of C identifies the column of 
the c l a s s  a lgebra table which is being considered. The en t r ies  in the ith row of R.. (K,) 

t h  

11 

3 



are the coefficients of the c lasses  in the ith row of the ath column of the c lass  algebra 
table. These coefficients are equal to the number of t imes that c lass  appears  in the prod- 
uct KiK,. Thus,  an  entry in the ath column of the form 2K0 + 4K3 means that one 
really has 

K.K l a ,  = 2 K O + O K 2 + 4 K 3 + .  . . * 

so that the ith row of R..(Ka) is (2 
the sequence KO, K2, K3 . . . must  be preserved to obtain the cor rec t  representation. 

c lasses  s o  there  will be three IR's .  Although the representation for KO is known, it 
can be used as a check on the s t ructure  constants. From the c lass  algebra table in the 
preceding section 

0 4 . . .) . Note that the order  of the c lasses  in 

Again the described procedure is illustrated by using the group D3. There  are  three 

1J 

KiKO = Ki 

3 
Since K ~ K ~  =E.! K.,  it i s  c lear  that .io = 6... Since R . . ( K ~ )  = .io, 

10 J 11 1J 

j = l  

Next R(K2) will be done in some detail.  It is only necessary to examine the K2 
column in the c lass  algebra table and to wri te  each row as a l inear combination of c lasses  
in the s t r ic t  sequence KO, K2. K3. The resul t  of this  procedure takes the following form:  

KOK2 = K2 = OKo+1K2+OK3 

K K - 2K0 + K2 = 2K0 + 1K2 + OK3 2 2 -  

K3K2 = 2K3 = OKo+OK2+2K3 

In this  form, the nine s t ructure  constants CJ are explicitly displayed and ia, 

R(K2) = (: %) 
0 0  

4 



t In the same way, an examination of the K3 column of the c lass  algebra table shows that 

; r  
The standard procedure for finding the eigenvalues of mat r ices  can certainly be used 

here .  However, the collection of matr ices  which form a representation of a c lass  algebra 
have special properties.  If proper advantage i s  taken of these properties,  the eigenvalues 
and eigenvectors can be found with far l e s s  effort than by using conventional methods. 

Conventionally, for groups having a large number of c lasses ,  the evaluation of a co r -  
respondingly high-order determinant is required to obtain the characterist ic equation. A 
computational technique wil l  be described which may resul t  in a considerable reduction of 

I 

R(K3) = (! i) 

I 

= KO 

K2 
- - 

= 2K0 + K2 

Kf = 2K2 + K i  = 2K2 + (2K0 t K2) = 2K0 + 3K2 

Therefore ,  

Ki - 3K2 2 + 4K0 = 0 

is the Hamilton-Cayley equation for K2. Consequently, 
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2 X 3 - 3 X  + 4 = 0  

is the characterist ic equation for  R(K2). This equation is obtainable directly f rom R(K2) 
by using conventional methods with slightly more  algebra.  From this resul t ,  the eigen- 
values A = 2, 2,  and -1 are obtained. 

I t  i s  worth noting that the characterist ic equation so obtained may not be unique. 
3 example, since K2 - 3K2 - 2Ko is also equal to zero,  another character is t ic  equation is 

X - 3X - 2 = 0. The roots  of this equation are X = 2 ,  -1, and -1. The character is t ic  
equation can be relied on to contain ?,.11 of the distinct eigenvalues (2 and -1 f o r  R(K2)), 
but the degeneracy may fall on the wrong eigenvalue. This fact is not a ser ious  drawback 
to the use  of this method. In the first place, if some eigenvalues are degenerate, then a 
characterist ic equation yielding only the distinct ones can always be found from a linear 
relation involving powers of K less than nc. In the case  of R(K2), the relation 

K2 - K2 - 2Ko = 0 i s  valid. Thus,  a characterist ic equation A2 - X - 2 = 0 may be used 
to obtain the distinct eigenvalues A = 2 and -1. The fact that X = 2 i s  doubly degenerate 
is important pr imari ly  in that two linearly independent eigenvectors belong to the same  
eigenvalue. This  will be shown to emerge automatically in the computation of the eigen- 
vector generators discussed in the following subsection. The main point to be made here  
is that a Hamilton-Cayley equation may be used to obtain eigenvalues for R(Ki) as soon as 
a relation involving powers of Ki emerges.  If all of the powers up to and including the 
dimension of R(Ki) are used, all the eigenvalues will be obtained from the result ing char-  
acter is t ic  equation. If, while building up powers of Ki, a l inear dependence is noticed 

before KYc is reached, distinct eigenvalues may still be obtained from the algebraically 
s impler  characterist ic equation. 

powers of K3 is obtained until K3 is used: 

For+ 

3 

2 

This  same technique will be used for R(K3). It will be seen that no relation involving 
3 

K3 3 = 3(K3 + lK3K2) = 

= KO 

3(K3 + 2K3) = 9K3 

From this list 
The characterist ic 

of powers of K3, the 
equation h3 - 9~ = o 

Hamilton-Cayley equation K: - 9K3 = 0 resu l t s .  
yields the eigenvalues h = 0 and *3. 

6 



Eigenvectors of Regular Representat ion 

A s  in the preceding section, a procedure will be described which, while not new, does 
not seem to be widely used f o r  the purpose a t  hand and does seem to be a rather  efficient 
way to find the eigenvectors. One simply constructs what, in this report ,  will be called 
the eigenvector generators GA. (4 , which are defined by 

b 
J 

G(i)= II F(Ki)  - A k d  + Xk#Xj 

where I is the unit matr ix .  The matrix GY) contains, as columns, all of the eigenvec- 

t o r s  of R(Ki) belonging to the eigenvalue h.. This quantity is directly proportional to 
Harter ' s  unit dyads (ref. 4). The number of linearly independent columns (or eigenvec - 
tors)  is equal to the degeneracy of A. This is the reason that there is no loss  of infor- 
mation about the degeneracy of the eigenvalues in using the Hamilton-Cayley equation 
K2 - K2 - 2K0 to find eigenvalues of R(K2). The fact that X = 2 is doubly degenerate 

immediately shows up in the form of Gf) . Thus, 

j 
3 

J '  

2 

G(2) 2 = [R(K2) - (-1)d = 

It is c lear  that Gf) has two linearly independent columns, s o  X = 2 is doubly de-  
as the kth linearly independent (i) 

X.,k generate.  It is convenient to define the symbol V 
3 column of GA (i) . These quantities are the eigenvectors. If this procedure for finding 

j 
eigenvectors is unfamiliar, one may note that 

d2) 2 , 1 -  - ( a )  
and 

d2' 2 , 2  - - (8) 
are independent column vectors  of G2 (2) . Also, 

7 



R(K2) (i) = (g  ) = 2V(2) 291 

and 

Therefore,  the correctness  of the assertion that d2) and d2) are eigenvectors 
291 292  

of R(K2) belonging to the eigenvalue h = 2 has been demonstrated. Similarly,  

so  that only the eigenvector 

is obtained this  t ime.  

the c lasses  Ki is a faithful one so that 
Before computing the G(3)?s, i t  is well to observe that the regular  representation of 

Thus, the c lass  algebra table may be used to avoid multiplying mat r ices  in cases where 
more  than  two distinct eigenvalues exist  for  R(Ki). A s  a n  example, 

G(3) 0 = [R(K3) - 31][R(K3) - (-3Iq = R(K3)2 - 91 

But, 

8 



‘ Thus, 

-2 1 0 
G(3) 0 = 3R(K2) - 61 = 3 ( 2 -1 0 )  

\ o  0 0 1  

~ .No new eigenvectors are obtained (Vo (3) = V-l).  (2) However, f rom G r ’  and Gi33), the 
I eigenvectors 

and 

-3 -(-J - 

are obtained. 

Matching the Eigenval ues 

A character  table (CT) i s  in effect a collection of t r aces  of IR’s of the group. A s  
such, all of the en t r ies  in a given row of a CT belong to the same IR. Up to now the 

the character x i a )  assigned to c lass  i is associated with a specific member of the set 
{ A i } .  It is therefore  required that for  a given da) ,  a single eigenvalue be picked from 
each of the nc sets {Ai) and that these eigenvalues be arranged in a new set 

eigenvalues are arranged in sets according to classes Ki. For a specific IR, 99 (4 , 

all of which will then be associated with the given !dff). Such a procedure will be called 
matching the eigenvalues. 

A s  a guide to  matching, i t  may be noted that Vi3) was equal to V!? in the p re -  

ceding section. This  means that the column vector was  an eigenvector of R(K2) 

9 



belonging to the eigenvalue X = -1 and simultaneously it was an  eigenvector of R(K3) be- 
longing to the eigenvalue X = 0. This  is not an  accidental resul t .  The collection of eigen- 
values (A'} has associated with it a single column vector VCY which has the property 

C Y C Y  R(K~)v@ = X~ v i = 0, 2,  . . ., nc 

The vector Va i s  thus a simultaneous eigenvector of every R(Ki). When this property 
is used, h = 0 f rom R(K3) and X = -1 f rom R(K2) belong to the same set { XO) . Every ,, 
set (Aa) w i l l  contain the nc-fold degenerate eigenvalues X = 1 from R(KO) so that the 
complete set found i s  

CY CY A. = 1 A; = -1 x3 = 0 

Similarly, one finds that both Vf) and VLy are  eigenvectors of R(KZ) belonging to 
the same eigenvalue X = 2 ,  so  that the remaining matched se t s  are  

1 2 3 
1 2 -3 

(2) nor d 2 )  are eigenvectors of R(K3). However, the (It tu rns  out that neither V 
291 292  

l inear combinations Vf)l + (= Vf)) and d2) - d 2 )  are simultaneous 2 , l  2 , 2  
vectors  of R(K2) and R(K3).) 

characters  in  order  of increasing dimension of the IR. The relation 
The rest i s  a matter  of convention. The most common convention is the listing of the 

is valuable in arranging the table. If the matched set 

10 



I K2 K3 

I do) = 1 2 3 

~ 

is picked to be associated with 9('), then i t  i s  found that 

r 

Similarly, if {A(2)} = 1, 2, -3 and {A(3)} = 1, -1, 0 (where the sequence in each case  
corresponds to KO, K2, K3) are used, it i s  found that L ( 2 )  = 1 and 1 ( 3 )  = 2. 

C o l u m n s  of Character Table 

A l l  of the necessary numbers are now available. Substitution of these numbers into 
the relation 

allows construction of the following completed character table : 

Charac ter  Table f o r  D4 (-Quaternion Group Q) 

In the preceding description of the procedure used in obtaining character  tables, D3 
was used to i l lustrate  each s tep.  After all the steps were  completed, the character  table 
of D3 was displayed. Another example is now worked out in detail - the character  table 
fo r  D4. 

11 



The group table for  D4 is shown in appendix B. From it, the following c lass  alge- 
bra table may be readily constructed: 

0 0 0 2 0  

2 2 0 0 0  0 0 2 0 0  

The eigenvalues of R(K2) can be obtained easily directly f rom the matr ix  itself. 
Thus,  

3 2  (A - 1) (A - 1) = 0 

is the characterist ic equation and X = 1, 1, 1, 1, -1 are the eigenvalues: 

12 

- 
~ 

I K2 KO K3 K4 Kg 

K3 K3 2K0 + 2K2 2K5 2K4 

2K3 2K0 + 2K2 K4 K4 2K5 

Kg Kg 2K4 2K3 2K0 + 2K2 

Since there  are five c lasses ,  the regular representation of the c l a s ses  consists of 
5 by 5 matrices.  These may be constructed from the s t ructure  constants displayed in 
this class algebra table. They are as follows: 



. 
Therefore ,  as expected, there  a r e  four linearly independent eigenvectors belonging to 
A =  1: 

The eigenvector generator for X = -1 is 

Therefore,  

d 2 ) - ( [ )  -1 - 

The eigenvalue X = -1 is nondegenerate. Therefore, we may t ry  operating on it 
with R(K3) to see if  it is an  eigenvector of R(K3) also: 

13 



Therefore V'_y is an  eigenvector of R(K3) belonging to the eigenvalue h = 0 of 
R(K3). Thus, the matching 

-1 0 

has resulted.  

belonging h = 0 of each of these mat r ices  a lso so  that a complete matching set 
obtained: 

Operating on V" by R(K4) and R(K5) would show that V'_? i s  a lso a n  eigenvector 
i s  

1 -1  0 0 0 

In this example, however, repetitious computation may be avoided by noting that the 
c lass  s t ructures  of K3, K4, and K5 are all the same;  that i s ,  

K 2 = K: = K5 2 = 2K0 + 2K2 
3 

Thus, the same Hamilton-Cayley equation (and therefore,  the s a m e  characterist ic equa- 
tion) is obtained for each of these c lasses .  However, the eigenvector generators are not 
the same .  

The characterist ic equation for  each of the c lasses  is 

h3 - 4h = 0 

Therefore,  h = 0, +2 are the distinct eigenvalues. 

K3 is examined: 
In order to find the degeneracy of these eigenvalues, the eigenvector generator for  

(Note that since R(K4)2 = R(K5)2 = 2R(KO) + 2R(K2), Gf) and Gf) a r e  a lso the s a m e  
as ~ f ) . )  

14 



-1 
1 
0 
0 
0 

I .  

~ 
Therefore,  there  only one eigenvector and h = 0 is nondegenerate. (Vf) = V", as 
was found ea r l i e r .  

c' Next Gf) is examined: 
I 

G(3) 2 = [R(K3) - 0 - I] [R(K3) + 2 4  = 2[R(Ko) + R(K2) + R(K3)1 

I Thus, h = 2 is doubly degenerate: 

Now for D4, each R(Ki) has five roots in its character is t ic  equation. For R(K3), 
X = 0 is nondegenerate and h = 2 is doubly degenerate, so the remaining two roots must 
both belong to X = -2. Therefore,  X = -2 is doubly degenerate. However, G S  must be 

(3) explicitly: (3) and V examined in order  to obtain V -2,2 - 2 , l  

1 5  



so that 

The eigenvector generators fo r  R(K4) and R(K5) a r e  different from those of 
Thus, 

11 1 0 1 o \  

G(4) 2 = 2[R(KO) + R(K2) + R(K4)1 = 2 

/1 1 0 -1 o\ 
1 1  0 - 1  

d4) - 2[R(KO) + R(K2) - R(K4)1 = 2 0 0 2 0 -:) 
-2 -2 0 2 0 

-2 - 

\ o  0 -2 0 2/ 

and 

v2,1 (4) = (1 v(4) 2 ,2  -0 - d4) - 2 , l  -0 - -2 q2=(9 
0 0 -1 

/1 1 0 0 11 
1 0 0 1  

GL5) = 2[R(KO) + R(K2) + R(K5)1 = 2 

\2 2 0 0 2/ 

/1 1 0 0 -l\ 

G!52) = 2p(KO) + R(K2) - R(K5)1 = 2 
0 - 2  2 0 

\-2 -2 0 0 2 1  

16 



I and 

. The rest of the matching in this case is not entirely a mechanical procedure.  Each 
simultaneous eigenvector which can be used to obtain a set 
particular linear combination of eigenvectors of a given R(Ki) belonging to the degenerate 
eigenvalue hi of that matr ix  R(Ki). A certain amount of trial and e r r o r  i s  required in 
such cases  to find the simultaneous eigenvectors. However, some general  observations 
can reduce the total number of trials (and thereby some of the "error").  For instance, 
each of the eigenvectors of R(K3), R(K4), and R(K5) belonging to degenerate eigenvalues 
are expressible as  l inear combinations of the four ei envectors of R(K2) belonging to  
h = 1. Therefore ,  any l inear combination of such V R ) f s ,  d4) , s ,  and d 5 ) ' s  is auto- 
matically an  eigenvector of R(K2) belonging to h = 1. 

vector 

i s  expressible as a 

These comments may be readily applied to the construction of the simultaneous eigen- 

The l inear  combinations of eigenvectors of R(K3), R(K4), and R(K5) which go to 
make up this  vector are 

Therefore ,  another matched set is obtained. Namely, 

1 2 2 2 

17 



Similarly, trying 

V 2 , l  (3) - d 3 )  2 ,2  - - (9 
-2 

shows that 

= d 2 )  + 2 d 2 )  - 2vi?I3 - 2v1, (2) 
191 192 

so that another matched se t  is thereby obtained: 

K2 K3 K4 Kg 

1 2 -2 -2 

(3) + 2 d 3 )  and d 3 )  - 2V-2,2, (3) respectively,  a r e  found to resul t  in the The trials V - 2 , l  -2,2 -2 ,2  
remaining two linearly independent simultaneous eigenvectors 

S v3 = 
-2 

which yield the remaining matched sets 

K2 K3 K4 Kg 

1 -2 2 -2 
1 -2 -2  2 

18 
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' I )  

1 
I 
I 

If the nondegenerate eigenvector V'_"l is called V5, S these matched sets can now be 

used to wri te  the diagonalized R(Ki) mat r ices  in a form suitable for  obtaining the charac- 
ters of D4. These are 

There  are five c lasses  and therefore five IR's for D4. Therefore,  the only solution 
5 

CY=l 
class s t ruc ture  is such that OC0 = OC2 = 1 and OC3 = OC4 = O C 5  = 2. The character  

(9  j 
table f o r  D4 is now obtained immediately (note that 9 denotes j th  IR of dimension 
i X  i, not counting 9 ( O )  as a 1 x 1): 

KO K2 K3 K4 Kg 

19 



CONCLUDING REMARKS 

A systematic procedure for constructing the character  table of a given finite group is 
presented. Although the individual sections of the procedure are not original, the collec- 
tion of procedures would seem to be justified on the grounds that they make the task of 
computing group character  tables much more  straightforward than previously published 
procedures.  Each step in the construction of character  tables is i l lustrated by worked 
out examples. An attempt was made to make the report  self-contained by including a n  
appendix of group tables, character  tables, and c lass  algebra tables for many of the com- 
mon finite groups. 

* 

Lewis Research Center,  
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 22, 1968, 
124-09-01-05-22. 
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APPENDIX A 

SYMBOLS 

character table 

s t ructure  constant fo r  an  algebra 

number of elements in j th  c lass  

Q! th irreducible representation 

(order of class) 

of a group Y 

eigenvector generator f o r  c lass  
Ki which generated eigenvec- 
t o r s  belonging to eigenvalue 
A. of representation R(Ki) 

3 
group 

element of group 

irreducible representation 

ith c l a s s  of group 

linear dimension of 9 (4 
number of classes  

regular  representation of the 
c l a s s  algebra for c lass  Ri 

representation 

t r ace  o r  sum of diagonal ele- 

kth eigenvector belonging to 

3 

ments of a matrix 

eigenvalue A. of representa- 
tion R(Ki) 

eigenvalue 

character ;  t race  of irreducible 
representation 

root of 1 (For a cyclic group of 

.) 
%i/n order  n ,  w = e 

is isomorphic to (e. g. , D4 -Q) N 

Left superscript:  

0 order  of group 

Right superscr ipts  : 

i on irreducible representations 
j 

the j th irreducible represen- 
tations of dimension i x i, not 
counting ~(0) as a 1 x 1 

0 on irreducible representations 
the irreducible representation 
which represents  every ele- 
ment of the group by 1 

S simultaneous eigenvector 

Right subscript  : 

denotes fac t  that attached sym- 
bol is for the inverse of that 
for subscript  i 

0 

Groups : 

‘n 

Dn 
T tetrahedral group 

Td 
Group elements : 

R, r rotations 

P reflections 

i 

cyclic group of order  n 

nth dihedral group 

cube group 

inversions (ref le c tion through 
origin) 
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APPENDIX B 

R2 

R 

GROUP TABLES, CHARACTER TABLES, AND CLASS ALGEBRA 

1 1 R R 2  

R2 1 R 

R R 2 1  

TABLES OF SOME COMMON FINITE GROUPS 

The material in this appendix is taken from lectures  delivered by W. G. Har te r  at 
NASA in the summer  of 1966. A s  i s  usual, an  entry in a table i s  the resul t  of group oper- 
ation by the element in the column heading the entry followed by group operation by the . 

element i n  the row heading the entry.  

v 

CYCLIC GROUPS, Cn 

(Each e lement  of Cn is in  a c l a s s  by i tself ,  w = exp(2ni/n)) 

Group Table  Charac t e r  Table  

22 

1 R  

R 

1 R R2 

c 3  

KO K2 K3 

1 R R2 
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GROUP D2 

Group Table Character Table 

( g o =  gi, i = 1, . . . , 4) 

1 R: Ri R: 

Group Table 

g2 83 
R R2 

R R2 

1 R  

R2 1 

g4 

p1 

KO K2 K3 K4 

1 1  1 1 

1 1 -1 -1 

1 -1 1 -1 

1 -1 -1 1 

GROUP D3 

g5 g6 

p2 p3 

Character Table 

p1 p2 p3 

p2 p3 p1 

1 R2 R 

R 1 R2 

R2 R 1 

1 1 1 

1 1 -1 

2 -1 0 

Class Algebra Table 

KO K2 K3 
K2 2K0 + K2 2K3 

3K0 + 3K2 
K3 2K3 
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g0 

1 

g5 g6 

p1 p2 

1 
- 
R2 - 
R3 

g7 g8 

p3 p4 

GROUPS D4 AND Q 

Group Table for D4 

g2 

R2 

R2 

1 

R 

R3 

p2 

p1 

p4 

p3 

g3 g4 

R R3 

R R3 

R3 R 

1 R2 

R2 1 

p3 p4 

p4 p3 

p2 p1 

p1 p2 

1 

-1 

-i 

i 

- j  

j 

-k 

k 

p4 p3 

1 R2 R R3 

-1 i -i 

1 -i i 

i 1 -1 

-i -1 1 

j k -k 

- j  -k k 

k - j  j 

-k j -j * R R R2 

Character Table for  D4 o r  Q 

KO 52 K3 K4 K5 
~ ~~ ~ 

1 1 1 1 1  

1 1 1 -1 -1 

1 1 -1 1 -1 

1 1 -1 -1 1 

2 - 2  0 0 0 

Group Table for Q 

g5 g6 

j - j  

-1 j 

-k k 

k -k 

1 -1 

-1 1 

i -i 

-i i 

g7 g8 

k -k 

-k k 

j - j  

- j  j 

-i i 

i -i 

1 -1 

-1 1 

Class Algebra Table for D4 or Q 



, 

a 

g2 g3 

R R4 

R R4 

1 R3 

R2 1 

R4 R2 

R3 R 

p4 p1 

GROUP D5 

Group Table 

g4 g5 

R2 R3 

R2 R3 

R R2 

R3 R4 

1 R  

R4 1 

p3 p2 

g6 g7 g8 g9 g10 

p1 p2 p3 p4 p5 

1 R4 R3 R2 R 

R 1 R4 R3 R2 

R2 R 1 R4 R3 

R3 R2 R 1 R4 

R4 R3 R2 R 1 

Character Table 

KO K2 R3 K4 

1 1 1 1 

1 1 1 -1 

- 1 -  qii -1+6 0 2 
2 2 

2 - l + &  -1-6 
2 2 

Class Algebra Table 

K O %  K3 K4 

1 {R, R4} {R2,R3} {Pi)  
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K O  = 

K@ = 

K@ = 

g0 

1 
- 

1 
- 

'; 
2 

'2 

'3 

'4 

' 1 
'2 

'3 

'4 

2 

2 

- 

- 

R; 

3 
R23 

KO K2 Kg K4 

3K3 K3 4 K O + 4 K 4  4% 

K2 4K3 4 K O + 4 K 4  3K2 

3K3 3 K 0 + 2 K 4  K4 3K2 

Group Table 

g2 g3 g4 g5 

'1 '2 '3 '4 

'1 '2 '3 '4 

'21 r: r i  '23 
2 2  2 

'3 '2 ': '1 

r i  i-; r3 2 2  r2 

r i  r3 r; r4 2 

'4 '3 '2 '1 

'2 '1 '4 '3 

'3 '4 '1 '2 

g6 g7 g8 g9 
rl 2 r i  '23 r4 2 

'21 r2 2 2  r3 r: 
~~ 

'1 '3 '4 '2 

'4 '2 '1 '3 

'2 '4 '3 '1 

'3 rl '2 '4 

2 2 2  'i '1 '4 '3 

'23 '4 '1 '2 
2 2 2  

'24 '23 r i  r; 

. 

GROUP T 

:lo gll g12 

'2 '3 '4 

'1 '4 '3 

'4 '1 '2 

'3 '2 '1 

Charac ter  Table 

C las s  Algebra Table 



I 

GROUP Td OR 0 

Group Table 

R1 i5 i6 

il Rz i2 

i4 i3 R3 

R; i6 i5 

i2 R," il 

ig i4 R: 

Rz" i2 Rz 

R2 il 4 
R~ R: i4 

R: R~ i3 

i6 R; R~ 

i5 R~ R; 

Class Algebra Table 

"13 g14 g15 g16 g17 g l f  

R1 Rz R3 4 4 4 
R1 3 R3 R i  R i  R: 

$ R; R: il i3 i6 

i2 ig R~ R~ R: i5 

5 i4 i6 i2 R~ R: 

il R~ i5 $ i4 R~ 

'3 i6 il R3 R1 

R~ R: i2 i3 i5 4 
R~ 4 R: i6 i2 

R: i5 ~1 i4 R: il 

R; i l  i4 R~ i2 i3 

i5 4 i3 i6 Rz 14 

i6 i2 R: i5 il R~ 

g19 g20 g21 g22 g23 g24 

il i2 i3 i4 i5 

il i2 i3 i4 i5 

R3 i4 R1 i5 i2 % 

i4 P , ~  it: i6 il 

i3 R: i5 R~ il 4 
R; i3 is R; ~z i2 

R; i5 R," i2 i4 R: 

i6 R~ R~ il R: i4 

i5 R: il ~2 i3 R~ 

R~ i6 i2 4 R~ i3 

~2 4 R: R~ i6 i5 

iz ii R~ R: R~ R: 

4 ~2 i4 i3 R: R~ 

K3 K4 K5 g(0) 
KO KZ 

&) 

K3 352 3K0 + 2K3 K4 + 2K5 2K4 + K5 &) 

K5 4K4 + 4K5 2K4 + Kg 3K2 + 4K3 6% + 3% + 2K3 9 ( 3 ~ )  

% 8 % + 4 $ + 8 K 3  3% 4K4 + 4K5 4K4 + 4K5 

K4 4K4 + 4K5 K4 + 2K5 6% + 3% + 2K3 3% + 4K3 g(31) 

Character Table 

1 1 1 1 1 

-1 -1 1 1 1 

2 0 0 2 -1 

3 0  -1 -1 1 

1 -1 3 0  -1 

27 



REFERENCES 

1. Margenau, Henry; and Murphy, George M. : The Mathematics of Physics and Chem- 
i s t ry .  Second e d . ,  D. Van Nostrand, Inc . ,  1956, pp. 526-530. 

2. Hamermesh, Morton: Group Theory and Its Application to Physical Problems.  
Addison-Wesley Publ. Co. ,  Inc . ,  1962. 4 

3. Lomont, John S. : Applications of Finite Groups. Academic P r e s s ,  1959. 

4. Harter ,  William George: Applications of Algebraic Representation Theory. PhD 
r 

Thesis, Univ. of Calif . ,  Irvine,  1967. 

5. Bradley, C .  J .  : Space Groups and Selection Rules. J .  Math. Phys . ,  vol. 7, no. 7, 
July 1966, pp. 1145-1152. 

28 



1 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
WASHINGTON, D. C. 20546 

OFFICIAL BUSINESS FIRST CLASS MAIL 

POSTAGE A N D  FEES PAID 
NATIONAL AERONAUTICS A N T  

SPACE ADMINISTRATION 

, h 4 
! 
t 
5 

POSTMASTER: If Undeliverable (Section 158 
Postal Manual ) Do Not Returi 

‘The aeronauticaj and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of human knowl- 
edge of phenonzena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results thereof.” 

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS : 
Information receiving limited distribution 
because of preliminary data, security classifica- 
tion, or other reasons. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 

contribution to existing knowledge. 
COiitiaCc or grraiir aiid ioiisiderrd aii iuiprtdnt 

TECHNICAL TRANSLATIONS: Information 
published in a foreign language considered 
to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information 
derived from or of value to NASA activities. 
Publications include conference proceedings, 
monographs, data compilations, handbooks, 
sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION 
PUBLICATIONS: Information on technology 
used by NASA that may be of particular 
interest in commercial and other non-aerospace 
applications. Publications include Tech Briefs, 
Technology Utilization Reports and Notes, 
and Technology Surveys. 

Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONA L AER ON AUT1 CS AND SPACE ADM I N ISTRATION 
Washington, D.C. PO546 


